快播:关于线性结构中的双向链表如何实现?

2023-06-20 10:24:46 来源:博客园

前言

在上一篇文章中,主要是给大家介绍了单向链表的特点及其原理,但是我们没有通过代码进行练习。今天我会继续通过一篇文章,来给大家讲解双向链表的内容,尤其是会通过代码来进行链表的操作,希望大家重点关注哦。

全文大约【3500】字,不说废话,只讲可以让你学到技术、明白原理的纯干货!本文带有丰富的案例及配图视频,让你更好地理解和运用文中的技术概念,并可以给你带来具有足够启迪的思考...

一. 双向链表简介

1. 概念

在上一篇文章中,我们在介绍链表的种类时,曾经提到过双向链表。双向链表相比较于单链表,除数据域外,还具前和后两个指向指针。双向链表中的结构术语可以解释为:


【资料图】

2. 编码定义

根据上述对双向链表结点的定义,我们给出双向链表结点结构的Java定义实现:

class DNode{    Object data;    Node prev;    Node next;}

双向链表是一条真实存在的链表,由多个结点组成。在实际的编程中,通常会标记链表的两个特殊结点,分别为:头结点、尾结点。用另外一个变量size表示链表中元素的个数。

因此有如下链表类的定义:

public class DoubleLinkList{    private int size;//大小    private DNode head;//头结点    private DNode last;//尾结点}

在本篇文章接下来的内容中,我们将利用该DNode、DoubleLinkList两个定义来实现双向链表的各项操作。

二. 常见操作

因为双向链表是单链表的基础上扩展出来的结构,因此双向链表的很多操作与单链表的操作都是相同的,比如:查找元素、更新元素、插入元素、删除元素

1. 查找元素

1.1 查找头结点

因为DoubleLinkList中已经记录了头结点head,因此头结点的查找非常简单,如下:

public Object getHead(){    if(head == null){        return null;    }    return head.data;}

时间复杂度为O(1)。

1.2 查找尾结点

与头结点同理,查找尾结点的时间复杂度同样为O(1),编码如下:

public Object getLast(){    if(last == null){        return null;    }    return last.data;}

1.3 查找指定位置结点

当需要查找指定位置的结点元素时,双向链表比单链表的实现方式有所不同,原因是:单链表因为是单向的,因此只能从头结点向后单向查找;但双向链表前后均可查找,因此在进行指定位置查找时,为了提高查找效率,会首先判断要查找的位置处于链表的前半段还是后半段,若前半段则从头结点向后查找,若后半段则从尾结点向前查找,具体编程如下所示:

public Object get(int index){    //排除边界异常    if(index <0 || index>=size){        return null;    }//要查找的位置位于链表前半段if(index < (size>>1)){        DNode x = head;        for(int i = 0; i < index; i++){            x = x.next;        }        return x.data;    }else {//要查找的位置位于链表后半段        DNode x = last;        for(int i = size - 1; i >= index; i--){            x = x.prev;        }        return x.data;    }}

在上述代码中,size >> 1 的写法比较少见,“>>”在计算机编程中代表移位操作。常见的移位操作有两种:

通过实际的编程验证,我们可以知道:执行右移1位操作,变量数据会缩小为原来的1/2。左移相反。同时,我们可以分析出时间复杂度为O(n)。

2. 更新元素

更新元素操作需要两步:

根据位置的不同,可以将更新操作分为三种情况:更新头结点,更新尾结点,更新指定位置结点。

2.1 更新头结点

更新头结点代码与查找头结点类似,如下:

public boolean updateHead(Object obj){    if(head == null){        return false;    }head.data = obj;return true;}

更新头结点的时间复杂度为O(1)。

2.2 更新尾结点

public boolean updateLast(Object obj){    if(last == null){        return false;    }last.data = obj;}

更新尾结点的时间复杂度同样是O(1)。

2.3 更新指定位置结点

public boolean update(int index, Object obj){    if(index < 0 || index >= size){        return false;    }    if(index < (size>>1)){        DNode x = head;        for(int i = 0; i < index; i++){            x = x.next;        }        x.data = obj;    }else {        DNode x = last;        for(int i = size-1; i >= index; i--){            x = last.prev;        }        x.data = obj;    }    return true;}public boolean addHead(Object data){    DNode h = head;DNode newNode = new DNode(null,data,h);head = newNode;if(h == null);{        last = newNode;    }else {        h.prev = newNode;    }size++;return true;}

如上代码所示,修改指定结点元素的值采用的算法也是:先判断要操作的位置在前半段还是后半段,然后再进行精准查找,最后执行修改操作。

指定位置修改操作的时间复杂度为O(n)。

3. 插入元素

分析过了查找元素和更新元素操作的具体情况,我们很清晰的便能分析出插入元素操作的具体情况,其实也分为三种具体情景:头结点位置插入,尾结点位置插入,指定位置插入元素

3.1 头结点位置插入

public boolean addHead(Object data){    DNode h = head;DNode newNode = new DNode(null,data,h);head = newNode;if(h == null);{        last = newNode;    }else {        h.prev = newNode;    }size++;return true;}

根据如上代码,我们可以看到,在头结点位置插入新的元素,只需要将新添加的结点置为head结点,同时处理好新结点和原链表中头结点的指向关系即可。很明显,头结点位置插入的时间复杂度为O(1)。

3.2 尾结点位置插入

尾结点插入与头结点插入原理相同,只需要替换为尾结点以及指针的指向。如下所示:

public boolean addLast(Object data){    DNode l = last;DNode newNode = new DNode(l,data,null);last = newNode;if(last == null){        head = last;    }else {        l.next = newNode;    }size++;return true;}

时间复杂度为O(1)。

3.3 指定位置插入

在进行指定位置插入时,编程代码稍多些,原因是需要以下几步完成:

public boolean add(int index,Object data){    if(index < 0 || index > size){        return false;    }    if(index == size){        addLast(data);        return true;    }else {        //先找到要插入的指定位置的结点        DNode x = index(index);    //执行插入操作        DNode prevNode = x.prev;        DNode newNode = new DNode(prevNode,data,x);        x.prev = newNode;        if(prevNode == null){            head = newNode;        }else {            prevNode.next = newNode;        }        size++;    }}//查找index位置上的结点并返回public DNode index(int index){    if( index < 0 || index >= size){        return null;    }if( index < (size>>1)){        DNode x = head;        for(int i = 0; i < index; i++){            x = x.next;        }        return x;    }else {        DNode x = last;        for(int i = size-1; i >= index; i--){            x = x.prev;        }        return x;    }}

根据上述代码,我们可以发现插入指定位置的代码,需要用到查找指定位置的操作,先查找再插入,因此时间复杂度同样为O(n)。

4. 删除元素

有了前面的分析经验,我们可以非常自然的分析出删除操作同样分三种:删除头结点、删除尾结点、删除指定结点。接下来,一起来看看详细的情况:

4.1 删除头结点

public Object removeHead(){    if(head == null){        return null;    }    DNode h = head;    Object data = h.data;    DNode next = h.next;//将原来头结点的数据域和指针域均赋值为null置空    h.data = null;    h.next = null;    //将当前结点的next作为新的头结点    head = next;    //如果next为null,则说明当前链表只有一个节点,删除该节点,则链表的first、last都为null    if(next == null){        last = null;    }else {        // next要作为新的头节点,则其prev属性为null        next.prev = null;    }    size--;    return data;}

删除头结点只涉及头结点的逻辑判断和操作,因此删除头结点时间复杂度为O(1)。

4.2 删除尾结点

与删除头结点原理相同,操作尾结点。代码如下:

public Object removeLast(){    DNode l = last;    if(l == null){        return null;    }    Object data = l.data;    DNode prev = l.prev;//将当前尾节点的属性赋值为null,为了GC清理    l.data = null;    l.prev = null;// 让当前尾节点的prev作为新的尾节点,赋值给last属性    last = prev;// 如果prev为null,则说明当前链表只有一个节点,删除该节点,则链表的first、last都为null    if(prev == null){        head = null;    }else {        // prev要作为新的尾节点,则其next属性为null        prev.next = null;    }    size--;    return data;}

很明显,删除尾结点的时间复杂度为O(1)。

4.3 删除指定结点

删除指定结点的编码实现如下:

public Object remove(int index){    if(index < 0 || index >= size){        return null;    }//首先通过查找方法,查找到DNode node = index(index;//执行删除操作Object data = node.data;DNode next = node.next;DNode prev = node.prev;// 如果prev是null,则说明删除的是当前头节点,则将next作为新的头节点,赋值给headif(prev == null){        head = prev;    }else {        // 如果删除的不是当前头节点,则将要删除节点的prev与next连接一起,即将prev的next属性赋值成next        prev.next = next;        // 如果prev不是null,则赋值为null        node.prev = null;    }// 如果next是null,则说明删除的是当前尾节点,则将prev作为新的尾节点,赋值给lastif(next == null){        last = prev;    }else {        // 如果删除的不是当前尾节点,则将要删除节点的prev与next连接一起,即将next的prev赋值成prev        next.prev = prev;        // 如果next不是null,则赋值为null        node.next = null;    }//将要删除的结点的data数据域设置为nullnode.data = null;//链表的结点个数-1操作size--;return data;}

如上代码所示,删除指定位置的结点元素也需要先执行index(index)查找算法,至于index的实现,在前文介绍指定位置插入结点操作时,已经进行了实现,此处直接进行使用。

我们不难分析得到,删除指定位置的结点的时间复杂度是O(n)。

三. 其他操作

作为一种常见的数据结构,除了对自身结点元素的一些操作,还有一些对链表状态的获取,比如链表的长度,链表是否为空等,这里给大家介绍一下双向链表的一些其他操作。

1. 链表的大小(元素结点的个数)

public int size(){    return size;}

2. 判断链表是否为空

public boolean isEmpty(){    return size == 0;}

3. 获取链表元素组成的数组

public Object[] toArray(){    Object[] result = new Object[size];    int i = 0;    for(DNode node = head; node != null; node = node.next){        resunt[i++] = node.data;    }    return result;}

4. 清空链表

public void clear(){    for(DNode node = head; node != null; ){        DNode next = node.next;        node.data = null;        node.next = null;        node.prev = null;        node = next;    }    head = last = null;    size = 0;}

四. 结语

至此,我们已经连续用两篇文章给大家介绍了链表的相关知识。

在上一篇文章中,我们主要介绍了链表的基础知识和单链表的常规操作,同时辅以图示来说明各种操作情况。在本篇文章中,主要是从Java编程角度作为切入点,来进一步讲解双向链表的一些操作。特别是本篇文章中的大量代码实践,需要大家能够理清逻辑关系,希望你可以动手练起来哦。

上一篇:

缴获可卡因1吨!广东警方侦破特大海上跨国走私毒品案

下一篇:

缴获可卡因1吨!广东警方侦破特大海上跨国走私毒品案

推荐阅读